## An Efficient Stereoselective Total Synthesis of Synargentolide A and Its Epimer<sup>1</sup>)

by Biswanath Das\*, Penagaluri Balasubramanyam, Boyapati Veeranjaneyulu, and Gandolla Chinna Reddy

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500007, India (phone: +91-40-7193434; fax: +91-40-7160512; e-mail: biswanathdas@yahoo.com)

The stereoselective total synthesis of a naturally occurring  $\alpha$ -pyrone (=2*H*-pyran-2-one) derivative, synargentolide A (1), and of its epimer 2 (with the originally proposed structure of synargentolide A) was efficiently accomplished involving D-tartaric acid as the starting material and an olefin cross-metathesis reaction as the key step.

**Introduction.** –  $\alpha$ -Pyrone (=2*H*-pyran-2-one) derivatives isolated from natural source exhibit various important biological activities such as cytotoxic, antitumor, antileukemic, and antiviral properties [1]. The chemistry and biology of these compounds have attracted much attention in recent years. Synargentolide A (1), a member of this group, was isolated from *Syncolostemon argentees* [2]. Compound 2 with the originally proposed structure of synargentolide A was synthesized by two research groups [3][4], and one of the groups revised the structure of synargentolide A to 1 by synthesizing both 1 and 2 [4].

In connection with our work on the synthesis of naturally occurring  $\alpha$ -pyrones [5], we synthesized synargentolide A (1; revised structure) and its epimer 2 (originally proposed structure of synargentolide A) through an alternative efficient approach which we would like to report here.



**Results and Discussion.** – The *retro*-synthetic analysis (*Scheme 1*) indicates that synargentolide A (1) can be prepared from the olefins 3 and 4 by a cross-metathesis reaction. Compound 3 can be obtained from the olefin 5 which in turn can be prepared from D-tartaric acid (6).

1) Part 36 in the series 'Synthetic Studies on Natural Products'.

<sup>© 2011</sup> Verlag Helvetica Chimica Acta AG, Zürich



The synthesis of synargentolide A (1) was initiated by converting D-tartaric acid (6) into olefin 7 following a reported method [6] (*Scheme 2*). Deprotection of the TBS ('BuMe<sub>2</sub>Si) ether of this olefin by treatment with Bu<sub>4</sub>NF in THF afforded the primary alcohol 5 in high yield. Compound 5 [7] underwent *Swern* oxidation to form the corresponding aldehyde which was subsequently treated with MeMgBr in dry ether to produce the secondary alcohol 8 [8]. The diastereoisomers were not separated at this stage, but this isomer mixture was treated with methanolic HCl solution (for the deprotection of the acetonide group) and then acetylated with Ac<sub>2</sub>O in the presence of Et<sub>3</sub>N and *N*,*N*-dimethylpyridin-4-amine (DMAP). The two triacetates 3 (major, 72%) and 9 (minor, 28%) were separated and characterized by their optical rotation and spectral data (<sup>1</sup>H- and <sup>13</sup>C-NMR and MS). The physical and spectral properties of these compounds were identical to those reported earlier [4].



*a*) Bu<sub>4</sub>NF, THF, 0° to r.t., 3 h; 95%. *b*) 1. (COCl)<sub>2</sub>, DMSO, Et<sub>3</sub>N, anh. CH<sub>2</sub>Cl<sub>2</sub>, 1 h; 89%; 2. MeMgBr, anh. Et<sub>2</sub>O, -50°, 2 h; 62%. *c*) 1. MeOH, 2N HCl, r.t., 1 h; 2. Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, anh. CH<sub>2</sub>Cl<sub>2</sub>, 0° to r.t., 1 h; 92% (2 steps).

Scheme 1

Finally, the olefin cross-metathesis reaction of **3** and **9** with the known vinylsubstituted lactone **4**[5c] in the presence of *Grubbs*' second-generation catalyst yielded the naturally occurring synargentolide A (**1**) and its epimer **2**, respectively (*Scheme 3*). The physical and spectral properties of these compounds were identical to those reported earlier [2][4].



a) Grubbs' 2nd-generation catalyst, refluxing anh. CH<sub>2</sub>Cl<sub>2</sub>, 2 h; 66% for 1 and 67% for 2.

In conclusion, we have demonstrated a straightforward efficient stereoselective synthesis of synargentolide A (1) and its epimer 2 (with the originally proposed structure of synargentolide A) starting from readily available D-tartaric acid by means of an olefin cross-metathesis reaction as the key step.

The authors thank UGC and CSIR, New Delhi, for financial assistance.

## **Experimental Part**

General. Commercial reagents were used without further purification. All solvents were purified by standard techniques. Column chromatographic (CC): silica gel (SiO<sub>2</sub>; 60-120 mesh). Optical rotation: Jasco-Dip-360 digital polarimeter. NMR Spectra: Varian-Gemini-200, Bruker-300, or Varian-Unity-400 NMR spectrometers; in CDCl<sub>3</sub>;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. MS: Finnigan-MAT-1020B or Micromass-VG-70-70 H spectrometers; at 70 eV, direct inlet system.

(4R,5R)-2,2-Dimethyl-5-(prop-2-en-1-yl)-1,3-dioxolan-4-methanol (5). A stirred soln. of 7 (3 g, 10.49 mmol) in anh. THF (40 ml) was treated with 1M Bu<sub>4</sub>NF in THF (15.735 mmol) for 3 h at r.t. The mixture was extracted with AcOEt (3 × 25 ml), the combined org. layer washed with brine (2 × 10 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue purified by CC (SiO<sub>2</sub>, AcOEt/hexane 1:45): **5** (95%). Light yellow syrup.

(4R,5R)-*a*,2,2-*Trimethyl*-5-(*prop*-2-*en*-1-*yl*)-1,3-*dioxolan*-4-*methanol* (8). To a stirred soln. of  $(COCl)_2$  (13.08 mmol, 1.2 ml) in CH<sub>2</sub>Cl<sub>2</sub> (40 ml) at  $-78^{\circ}$ , DMSO (26.16 mmol, 1.83 ml) was added followed by addition of **5** (8.72 mmol, 1.5 g) in CH<sub>2</sub>Cl<sub>2</sub> (45 ml). The mixture was stirred for 1 h at  $-78^{\circ}$ , then quenched with Et<sub>3</sub>N (26.2 mmol, 3.7 ml), and diluted with CH<sub>2</sub>Cl<sub>2</sub> (25 ml). The combined org. layer was washed with brine (1 × 15 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue passed through a pad of SiO<sub>2</sub> to give the corresponding aldehyde (89%), which was used as such for further reaction. To a stirred soln. of the aldehyde (7.1 mmol, 1.32 g) in anh. Et<sub>2</sub>O (30 ml) at  $-50^{\circ}$ , a soln. of MeMgBr (9.1 mmol) was added dropwise over 10 min. Then the mixture was stirred for 2 h, quenched with sat. aq. NH<sub>4</sub>Cl soln. (20 ml), and extracted with AcOEt (3 × 10 ml). The combined org. layer was washed with

brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue was purified by CC (SiO<sub>2</sub>, AcOEt/hexane 1:4): **8** (62%).

(2R,3R,4R)- and (2S,3R,4R)-Hept-6-ene-2,3,4-triyl Triacetate (= (2R,3R,4R)- and (2S,3R,4R)-Hept-6-ene-2,3,4-triol Triacetate; **3** and **9**, resp.). To a soln. of **8** (4.57 mmol, 0.85 g) in MeOH (20 ml), 2N HCl (10 ml) was added dropwise over 5 min. Then the mixture was stirred for 1 h, quenched with sat. aq. NaHCO<sub>3</sub> soln., and extracted with AcOEt (4 × 10 ml). The combined org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue passed through a pad of SiO<sub>2</sub> to give the triols. To a stirred soln. of the triols in anh. CH<sub>2</sub>Cl<sub>2</sub> at 0°, Et<sub>3</sub>N and a cat. amount of DMAP were added followed by addition of Ac<sub>2</sub>O, After completion of the reaction (TLC monitoring), the mixture was extracted with AcOEt (3 × 10 ml), the combined org. layer washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue separated by CC (SiO<sub>2</sub>, AcOEt/hexane 1:4): **3** and **9** (92% overall yield of two steps).

Synargentolide A (=(2R,3R,4R,6E)-7-[(2R)-3,6-Dihydro-6-oxo-2H-pyran-2-yl]hept-6-ene-1,3,4-triyl Triacetate (=(6R)-5,6-Dihydro-6-[(1E,4R,5R,6R)-4,5,6-tris(acetyloxy)hept-1-en-1-yl]-2H-pyran-2one; **1**). Through a soln. of **3** (0.3 g, 1.1 mmol) and **5** (0.027 g, 0.22 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (10 ml) was first bubbled an N<sub>2</sub> flow, after which *Grubbs*' second-generation catalyst (0.063 g, 0.07 mmol) was added at once. The resulting mixture was heated under N<sub>2</sub> at 50° for 4 h. After cooling, the solvent was evaporated and the residue purified by CC (AcOEt/hexane 1:1): pure **1** (66%). Reddish liquid. Spectral properties: similar to those reported earlier [4].

(2S,3R,4R,6E)-7-[(2R)-3,6-Dihydro-6-oxo-2H-pyran-2-yl]hept-6-ene-1,3,4-triyl Triacetate (=(6R)-5,6-Dihydro-6-[(1E,4R,5R,6S)-4,5,6-tris(acetyloxy)hept-1-en-1-yl]-2H-pyran-2-one; **2**). As described for **1**, with **9** (0.2 g, 0.73 mmol), **5** (0.018 g, 0.15 mmol), and Grubbs' second-generation catalyst (0.040 g, 0.07 mmol): **2** (67%). Reddish liquid. Spectral properties: similar to those reported earlier [2][4].

## REFERENCES

- H. M. R. Hoffmann, J. Rabe, Angew. Chem., Int. Ed. 1985, 24, 94; S. D. Rychnovsky, Chem. Rev. 1995, 95, 2021; S. Hagen, J. V. N. Vara Prasad, B. D. Tait, Adv. Med. Chem. 2000, 5, 159; S. H. Inayat-Hussain, B. O. Annuar, L. B. Din, A. M. Ali, D. Ross, Toxicol. in Vitro 2003, 17, 433; H. Kikuchi, K. Sasaki, J. Sekiya, Y. Maeda, A. Amagai, Y. Kubohara, Y. Ohsima, Bioorg. Med. Chem. 2004, 12, 3203.
- [2] L. A. Collett, M. T. Davies-Coleman, D. E. A. Rivett, Phytochemistry 1998, 48, 651.
- [3] J. Garcia-Fortanet, J. Murga, M. Carda, J. A. Marco, ARKIVOC 2005 (ix), 175.
- [4] G. Sabitha, P. Gopal, C. N. Reddy, J. S. Yadav, Tetrahedron Lett. 2009, 50, 6298.
- [5] a) B. Das, K. Laxminarayana, M. Krishnaiah, D. N. Kumar, *Bioorg. Med. Chem. Lett.* 2009, *19*, 6396;
  b) B. Das, K. Suneel, G. Satyalakshmi, D. N. Kumar, *Tetrahedron: Asymmetry* 2009, *20*, 1536; c) B. Das, B. Veeranjaneyulu, P. Balasubramanyam, M. Srilatha, *Tetrahedron: Asymmetry* 2010, *21*, 2762.
- [6] J.-H. Liu, Y.-Q. Long, Tetrahedron Lett. 2009, 50, 4592.
- [7] D. Enders, A. Lenzen, M. Backes, C. Janeck, K. Catlin, M.-I. Lannou, J. Runsink, G. Raabe, J. Org. Chem. 2005, 70, 10538.
- [8] J. Mulzer, A. Angermann, Tetrahedron Lett. 1983, 24, 2843.

Received September 7, 2010