An Efficient Stereoselective Total Synthesis of Synargentolide A and Its E pimer¹)

by Biswanath Das*, Penagaluri Balasubramanyam, Boyapati Veeranjaneyulu, and Gandolla Chinna Reddy

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500007, India (phone: +91-40-7193434; fax: +91-40-7160512; e-mail: biswanathdas@yahoo.com)

The stereoselective total synthesis of a naturally occurring α -pyrone (=2H-pyran-2-one) derivative, synargentolide $A(1)$, and of its epimer 2 (with the originally proposed structure of synargentolide A) was efficiently accomplished involving D-tartaric acid as the starting material and an olefin cross-metathesis reaction as the key step.

Introduction. – α -Pyrone (=2H-pyran-2-one) derivatives isolated from natural source exhibit various important biological activities such as cytotoxic, antitumor, antileukemic, and antiviral properties [1]. The chemistry and biology of these compounds have attracted much attention in recent years. Synargentolide A (1), a member of this group, was isolated from *Syncolostemon argentees* [2]. Compound 2 with the originally proposed structure of synargentolide A was synthesized by two research groups [3] [4], and one of the groups revised the structure of synargentolide A to 1 by synthesizing both 1 and 2 [4].

In connection with our work on the synthesis of naturally occurring α -pyrones [5], we synthesized synargentolide A (1; revised structure) and its epimer 2 (originally proposed structure of synargentolide A) through an alternative efficient approach which we would like to report here.

Results and Discussion. – The retro-synthetic analysis (Scheme 1) indicates that synargentolide $A(1)$ can be prepared from the olefins 3 and 4 by a cross-metathesis reaction. Compound 3 can be obtained from the olefin 5 which in turn can be prepared from D -tartaric acid (6) .

¹) Part 36 in the series 'Synthetic Studies on Natural Products'.

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

The synthesis of synargentolide $A(1)$ was initiated by converting D-tartaric acid (6) into olefin 7 following a reported method [6] (Scheme 2). Deprotection of the TBS ('BuMe₂Si) ether of this olefin by treatment with Bu₄NF in THF afforded the primary alcohol 5 in high yield. Compound 5 [7] underwent Swern oxidation to form the corresponding aldehyde which was subsequently treated with MeMgBr in dry ether to produce the secondary alcohol $\mathbf{8}$ [8]. The diastereoisomers were not separated at this stage, but this isomer mixture was treated with methanolic HCl solution (for the deprotection of the acetonide group) and then acetylated with Ac_2O in the presence of Et₃N and N,N-dimethylpyridin-4-amine (DMAP). The two triacetates 3 (major, 72%) and 9 (minor, 28%) were separated and characterized by their optical rotation and spectral data (¹H- and ¹³C-NMR and MS). The physical and spectral properties of these compounds were identical to those reported earlier [4].

a) Bu₄NF, THF, 0° to r.t., 3 h; 95%. b) 1. $(COCl)_2$, DMSO, Et₃N, anh. CH₂Cl₂, 1 h; 89%; 2. MeMgBr, anh. $Et_2O, -50^{\circ}, 2 h; 62\%$. c) 1. MeOH, 2n HCl, r.t., 1 h; 2. Ac₂O, Et₃N, DMAP, anh. CH₂Cl₂, 0° to r.t., 1 h; 92% (2 steps).

Finally, the olefin cross-metathesis reaction of 3 and 9 with the known vinylsubstituted lactone $\frac{4}{5c}$ in the presence of *Grubbs*' second-generation catalyst yielded the naturally occurring synargentolide A (1) and its epimer 2, respectively (*Scheme 3*). The physical and spectral properties of these compounds were identical to those reported earlier [2] [4].

a) Grubbs' 2nd-generation catalyst, refluxing anh. CH_2Cl_2 , 2 h; 66% for 1 and 67% for 2.

In conclusion, we have demonstrated a straightforward efficient stereoselective synthesis of synargentolide $A(1)$ and its epimer 2 (with the originally proposed structure of synargentolide A) starting from readily available D -tartaric acid by means of an olefin cross-metathesis reaction as the key step.

The authors thank UGC and CSIR, New Delhi, for financial assistance.

Experimental Part

General. Commercial reagents were used without further purification. All solvents were purified by standard techniques. Column chromatographic (CC): silica gel $(SiO₂; 60-120$ mesh). Optical rotation: Jasco-Dip-360 digital polarimeter. NMR Spectra: Varian-Gemini-200, Bruker-300, or Varian-Unity-400 NMR spectrometers; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Finnigan-MAT-1020B or Micromass-VG-70-70 H spectrometers; at 70 eV, direct inlet system.

 $(4R,5R)-2,2-Dimethyl-5-(prop-2-en-1-yl)-1,3-diovalan-4-methanol$ (5). A stirred soln. of 7 (3 g, 10.49 mmol) in anh. THF (40 ml) was treated with 1m Bu4NF in THF (15.735 mmol) for 3 h at r.t. The mixture was extracted with AcOEt (3×25 ml), the combined org. layer washed with brine (2×10 ml), dried (Na₂SO₄), and concentrated, and the residue purified by CC (SiO₂, AcOEt/hexane 1:45): **5** (95%). Light yellow syrup.

 $(4R,5R)$ -a,2,2-Trimethyl-5-(prop-2-en-1-yl)-1,3-dioxolan-4-methanol (8). To a stirred soln. of $(COCl)_2$ (13.08 mmol, 1.2 ml) in CH₂Cl₂ (40 ml) at -78° , DMSO (26.16 mmol, 1.83 ml) was added followed by addition of $5(8.72 \text{ mmol}, 1.5 \text{ g})$ in CH₂Cl₂ (45 ml). The mixture was stirred for 1 h at -78° , then quenched with Et₃N (26.2 mmol, 3.7 ml), and diluted with CH₂Cl₂ (25 ml). The combined org. layer was washed with brine $(1 \times 15 \text{ ml})$, dried (Na₂SO₄), and concentrated, and the residue passed through a pad of SiO₂ to give the corresponding aldehyde (89%), which was used as such for further reaction. To a stirred soln. of the aldehyde (7.1 mmol, 1.32 g) in anh. Et_2O (30 ml) at -50° , a soln. of MeMgBr (9.1 mmol) was added dropwise over 10 min. Then the mixture was stirred for 2 h, quenched with sat. aq. $NH₄Cl$ soln. (20 ml), and extracted with AcOEt (3 \times 10 ml). The combined org. layer was washed with brine, dried (Na_2SO_4) , and concentrated, and the residue was purified by CC $(SiO_2, AcOE/hexane 1:4)$: $8(62\%)$.

 $(2R,3R,4R)$ - and $(2S,3R,4R)$ -Hept-6-ene-2,3,4-triyl Triacetate (= $(2R,3R,4R)$ - and $(2S,3R,4R)$ -Hept-6-ene-2,3,4-triol Triacetate; 3 and 9, resp.). To a soln. of $8(4.57 \text{ mmol}, 0.85 \text{ g})$ in MeOH (20 ml), 2n HCl (10 ml) was added dropwise over 5 min. Then the mixture was stirred for 1 h, quenched with sat. aq. NaHCO₃ soln., and extracted with AcOEt $(4 \times 10 \text{ ml})$. The combined org. layer was washed with brine, dried (Na₂SO₄), and concentrated, and the residue passed through a pad of SiO₂ to give the triols. To a stirred soln. of the triols in anh. CH₂Cl₂ at 0° , Et₃N and a cat. amount of DMAP were added followed by addition of Ac₂O, After completion of the reaction (TLC monitoring), the mixture was extracted with AcOEt (3×10 ml), the combined org. layer washed with brine, dried (Na₂SO₄), and concentrated, and the residue separated by CC (SiO₂, AcOEt/hexane 1:4): **3** and **9** (92% overall yield of two steps).

Synargentolide $A (= (2R.3R.4R.6E) -7-(2R) -3.6-Dihvdro-6-oxo-2H-pvran-2-vl/hept-6-ene-1,3,4-tri-1)$ yl Triacetate $= (6R)$ -5,6-Dihydro-6-[(1E,4R,5R,6R)-4,5,6-tris(acetyloxy)hept-1-en-1-yl]-2H-pyran-2one; 1). Through a soln. of 3 (0.3 g, 1.1 mmol) and 5 (0.027 g, 0.22 mmol) in dry CH₂Cl₂ (10 ml) was first bubbled an N₂ flow, after which *Grubbs'* second-generation catalyst $(0.063 \text{ g}, 0.07 \text{ mmol})$ was added at once. The resulting mixture was heated under N_2 at 50 \degree for 4 h. After cooling, the solvent was evaporated and the residue purified by CC (AcOEt/hexane 1:1): pure 1 (66%). Reddish liquid. Spectral properties: similar to those reported earlier [4].

 $(2S,3R,4R,6E)$ -7- $I(2R)$ -3,6-Dihydro-6-oxo-2H-pyran-2-yl]hept-6-ene-1,3,4-triyl Triacetate (=(6R)-5,6-Dihydro-6-[(1E,4R,5R,6S)-4,5,6-tris(acetyloxy)hept-1-en-1-yl]-2H-pyran-2-one; 2). As described for 1, with 9 (0.2 g, 0.73 mmol), 5 (0.018 g, 0.15 mmol), and *Grubbs*' second-generation catalyst (0.040 g, 0.07 mmol): 2 (67%). Reddish liquid. Spectral properties: similar to those reported earlier [2] [4].

REFERENCES

- [1] H. M. R. Hoffmann, J. Rabe, Angew. Chem., Int. Ed. 1985, 24, 94; S. D. Rychnovsky, Chem. Rev. 1995, 95, 2021; S. Hagen, J. V. N. Vara Prasad, B. D. Tait, Adv. Med. Chem. 2000, 5, 159; S. H. Inayat-Hussain, B. O. Annuar, L. B. Din, A. M. Ali, D. Ross, Toxicol. in Vitro 2003, 17, 433; H. Kikuchi, K. Sasaki, J. Sekiya, Y. Maeda, A. Amagai, Y. Kubohara, Y. Ohsima, Bioorg. Med. Chem. 2004, 12, 3203.
- [2] L. A. Collett, M. T. Davies-Coleman, D. E. A. Rivett, *Phytochemistry* 1998, 48, 651.
- [3] J. Garcia-Fortanet, J. Murga, M. Carda, J. A. Marco, ARKIVOC 2005 (ix), 175.
- [4] G. Sabitha, P. Gopal, C. N. Reddy, J. S. Yadav, Tetrahedron Lett. 2009, 50, 6298.
- [5] a) B. Das, K. Laxminarayana, M. Krishnaiah, D. N. Kumar, Bioorg. Med. Chem. Lett. 2009, 19, 6396; b) B. Das, K. Suneel, G. Satyalakshmi, D. N. Kumar, Tetrahedron: Asymmetry 2009, 20, 1536; c) B. Das, B. Veeranjaneyulu, P. Balasubramanyam, M. Srilatha, Tetrahedron: Asymmetry 2010, 21, 2762.
- [6] J.-H. Liu, Y.-Q. Long, Tetrahedron Lett. 2009, 50, 4592.
- [7] D. Enders, A. Lenzen, M. Backes, C. Janeck, K. Catlin, M.-I. Lannou, J. Runsink, G. Raabe, J. Org. Chem. 2005, 70, 10538.
- [8] J. Mulzer, A. Angermann, Tetrahedron Lett. 1983, 24, 2843.

Received September 7, 2010